Section 5.1: The Natural Logarithmic Function: Differentiation

In the previous chapter, it was noted that the antiderivative of a power function is given by

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

However, this operation is not defined when $n=1$, because it results in a division by zero. Looking at the graph of $1 / x$, one can see that it should have a definite integral for any $x>0$.
We define the integral of $1 / t$ with respect to t over the interval $[1, x]$ to be $\ln x$ where $\ln x$ is the known as the natural logarithm function.

$$
\int_{1}^{x} \frac{1}{t} d t=\ln x
$$

Applying the fundamental theorem of calculus, we see that

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Or, more generally,

Figure 1: The area under the graph of the function $f(x)=$ $1 / \mathrm{x}$ on the interval $[1, t]$ is the equal to $\ln t$

$$
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}
$$

Using this latter equation, the familiar properties of $\ln x$ can be easily derived:

$$
\begin{aligned}
& \ln a b=\ln a+\ln b \\
& \ln \frac{a}{b}=\ln a-\ln b \\
& \ln x^{n}=n \ln x
\end{aligned}
$$

By substituting $x^{n}=2^{2 N}$ where N is an arbitrarily large number into the last of these equations, we see that

$$
\ln 2^{2 N}=2 N \ln 2>N
$$

Therefore, the natural logarithm of a number can be made arbitrarily large.

$$
\lim _{x \rightarrow \infty} \ln x=\infty
$$

In fact, of all integrals of the form, $\lim _{x \rightarrow \infty} \int_{1}^{x} t^{n} d t, \quad n=-1$ is the smallest value of n for which the integral is infinite.

Logarithmic differentiation

When differentiating functions involving natural logarithms, it is often expedient to rewrite the function using the laws of logarithms. For instance,

$$
\frac{d}{d x}=\ln \frac{x^{3} \sqrt{x+3}}{\left(x^{2}-3\right)^{2}}=\frac{d}{d x}\left(3 \ln x+\frac{1}{2} \ln (x+3)-2 \ln \left(x^{2}-3\right)\right)=\frac{3}{x}+\frac{1}{2(x+3)}-\frac{4 x}{x^{2}-3}
$$

In some cases it may be advantageous to approach a difficult derivative problem by taking the natural logarithm of both sides and differentiating implicitly rather than by attacking the derivative directly. For instance, $d y / d x$ may be calculated as follows:

$$
\begin{aligned}
y & =\frac{(x-2)^{2}}{\sqrt{x^{2}+1}} \\
\ln y & =\ln \frac{(x-2)^{2}}{\sqrt{x^{2}+1}} \\
& =2 \ln (x-2)-\frac{1}{2} \ln \left(x^{2}+1\right) \\
\frac{y^{\prime}}{y} & =\frac{2}{x-2}-\frac{x}{x^{2}+1} \\
y^{\prime} & =y\left[\frac{2}{x-2}-\frac{x}{x^{2}+1}\right] \\
& =\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}\left[\frac{2}{x-2}-\frac{x}{x^{2}+1}\right]
\end{aligned}
$$

This process is known as logarithmic differentiation.

Section 5.2: The Natural Logarithmic Function: Integration

In the last section it was noted that the integral

$$
\int_{1}^{x} \frac{1}{t} d t=\ln x
$$

Or more generally, for $x \in[a, b]$

$$
\int_{a}^{b} \frac{1}{t} d t=\ln b-\ln a
$$

But this was defined only for x values >0. Because $y=1 / x$ is an odd function, the integral from $-b$ to $-a$ should be the same but negative:

$$
\int_{-b}^{-a} \frac{1}{t} d t=\ln a-\ln b
$$

We may combine the last two equations by stating that the general antiderivative of the function $y=1 / x$ is

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Moreover,

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
$$

The latter formula, in combination with substitution and other integration techniques allows us to integrate a large number of functions. In particular, any function that can be written all or partly as a derivative divided by its parent function will involve a logarithm. In particular, the integral of the tangent function may be written as

$$
\int \tan x d x=-\int \frac{-\sin x}{\cos x} d x=-\ln |\cos x|+C
$$

A similar technique applies to the other trig functions as well. We can now summarizes the antiderivatives of the six basic trig functions as shown below:

Integrals of the Six Basic Trigonometric Functions

$$
\begin{array}{ll}
\int \sin u d u=-\cos u+C & \int \cos u d u=\sin u+C \\
\int \tan u d u=-\ln |\cos u|+C & \int \cot u d u=\ln |\sin u|+C \\
\int \sec u d u=\ln |\sec u+\tan u|+C & \int \csc u d u=-\ln |\csc u+\cot u|+C
\end{array}
$$

Section 5.3: Inverse Functions

If $f(x)$ is a function, then the inverse function f ${ }^{-1}(x)$ corresponding to $f(x)$ is the function that has the properties

$$
\begin{aligned}
& f^{-1}(f(x))=x \\
& f\left(f^{-1}(x)\right)=x
\end{aligned}
$$

where the domain of $f^{-1}(\mathrm{x})$ is the range of $f(x)$ and vice versa.

In general, $f^{-1}(x)$ can be thought of as the function that undoes $f(x)$. For instance, if $f(x)=$ $x+3$, then $f^{-1}(x)=x-3$.

The equation of $f^{-1}(x)$ may be found by replacing y in the definition of $y=f(x)$ with x and x with y and solving for y algebraically.

Since (y, x) is the point on the $f^{-1}(x)$ corresponding to (x, y) on $f(x), f(x)$ and $f^{-1}(x)$ are reflectionally symmetrical about the line $y=x$. Moreover, the slope $\Delta y / \Delta x$ at a point on $f(x)$ is the reciprocal of the corresponding point on $f^{-1}(x)$. In terms of derivatives, if $g(x)$ is an inverse function of $f(x)$, then

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

For example, the slope of $f(x)$ is 3 at the point $(2,7)$, then the slope of $f^{-1}(x)$ at the point $(7,2)$ is $1 / 3$.

This is sometimes written as

$$
\frac{d y}{d x}=\frac{1}{d x / d y}
$$

although it is important to note that in general these derivatives are not evaluated at the same points.

